Hypersphere CosmologyAlternative to big-bang

Tuesday, 17 December 2019 21:15

Type 1A supernovae and Hypersphere Cosmology

Lensing, Redshift and Distance for Type1A Supernovae.

All data input from Perlmutter et all, https://arxiv.org/pdf/astro-ph/9812133.pdf

The measured Apparent Magnitudes of type 1A Supernovae become converted into fluxes measured in Janskys and these fluxes become converted into Apparent Distances on the basis of the inverse square law taking the Absolute Magnitude of a type 1A supernova as -19.3 at 10 parsecs as the basis of calculation.

The Lensing Equation  then gives the Actual Distance for each supernova.

The Redshift-Distance Equation  then gives the Antipode distance of the Universe which comes out at ~13 billion light years with only minor divergences, in every case.

The physical principles underlying the Lensing Equation and the Redshift-Distance Equation lie here https://www.specularium.org/hypersphere-cosmology in sections 8 and 5 respectively.

This analysis suggests that the small positive spacetime curvature of a Hyperspherical Universe can account for the apparent discrepancies between observed redshifts and observed apparent magnitudes of type 1A, and the hypotheses of an expanding universe with an accelerating expansion driven by a mysterious ‘dark energy’ become unnecessary.

Read 4182 times Last modified on Friday, 21 February 2020 19:40
  • HyperSphere Cosmology +

                            Hypersphere Cosmology. (6)    P J Carroll 28/2/2021   Abstract. Read More
  • Type 1A supernovae and Hypersphere Cosmology +

    Lensing, Redshift and Distance for Type1A Supernovae. All data input from Perlmutter et all, https://arxiv.org/pdf/astro-ph/9812133.pdf The measured Apparent Magnitudes of Read More
  • Galactic Rotation Curves +

    Galactic Rotation Curves. A large discrepancy exists between the rotation curves for disc galaxies expected from a classical or relativistic Read More
  • Equation 17 +

    Equation 17 The Redshift-Distance and the Lensing equations 6 and 16 together yield a derivation for the Antipode length L Read More
  • Equation 16 +

        Equation 16 A stereographic projection can show the effect of projecting an n-sphere into an n-dimensional space. For Read More
  • Equation 15 +

    Equation 15 It may seem odd that whilst the ‘enhanced’ Planck length and Planck time set a lower limit for Read More
  • Equation 14 +

    Equation 14 The universe has an information deficit in the sense that it has only one bit of information/entropy for Read More
  • Equation 13 +

    Equation 13 The universe has an information deficit in the sense that it has only one bit of information/entropy for Read More
  • Equation 12 +

    Equation 12 The Bekenstein-Hawking conjecture arose to explain the behaviour of entropy in a black hole. https://en.wikipedia.org/wiki/Black_hole_thermodynamics#Overview It asserts that Read More
  • Equation 11 +

    Equation 11 The Dirac Large Numbers Hypothesis suggests that a huge dimensionless number, or perhaps just a few huge dimensionless Read More
  • Equation 10 +

    Equation 10 Here we show the modification to Newtonian Dynamics expected in a positively curved spacetime that has a negative Read More
  • Equation 9 +

    Equation 9 Galaxies rotate but they do not rotate in accordance with our standard ideas about gravity. A large discrepancy Read More
  • 1
  • 2